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Abstract

How does a child’s vocabulary production change and expand
over time? Past research has often focused on characterizing
population statistics of vocabulary growth. In this work, we
develop models that attempt to predict when a specific word
will be learned by a particular child. The models are based on
two qualitatively different sources of information: a represen-
tation describing the child (age, sex, and quantifiers of vocabu-
lary skill) and a representation describing the specific words a
child knows. Using longitudinal data from children aged 15-36
months collected at the University of Colorado, we constructed
logistic regression models to predict each month whether a
word would be learned in the coming month. Models based on
either the child representation or the word representation out-
perform a baseline model that utilizes population acquisition
norms. Although the child- and word-representation models
perform comparably, an ensemble that averages the predictions
of the two separate models obtains significantly higher accu-
racy, indicating that the two sources of information are com-
plementary. Through the exploration of such models, we gain
an understanding of the factors that influence language learn-
ing, and this understanding should inform cognitive theories
of development. On a practical level, these models support the
development of interventions to boost language acquisition.

Keywords: Language acquisition; word learning; lexical ac-
quisition

Introduction
How does a child’s current vocabulary inform and relate to
their vocabulary in the future? We know that deficits in a
child’s early lexicon is a predictor of future language skills
(Dale et al., 2003). Potentially, if researchers can recommend
words that the child is ready and able to learn, early learning
deficits might be corrected. However, reliable prediction can
be made only if word learning develops in a systematic way.
In this paper, we explore whether there are regularities in the
growth of a child’s vocabulary that allow the trajectory of an
individual’s learning to be predicted.

One source of information that can be used to model vocab-
ulary acquisition is population-level norms. The most com-
prehensive study (Dale & Fenson, 1996) collected produc-
tive vocabulary for over 1130 children between the ages of
16 and 30 months, based on parent reports on 649 words.
Summary statistics from this communicative development in-
ventory or CDI, describe norms of acquisition. For example,
78.7% of children produce the word dog by age 18 months.

Figure 1 top frame, shows an example of the CDI norms.)
These norms are typically used to assess a child’s vocabulary
in relation to her peers, as quantified by a CDI percentile for a
given age and vocabulary size. However, the CDI population
statistics can also be used to predict an individual’s learning
of a given word at a given age.

month 16 month 17 . . . month 29
airplane 38.5 39.4 . . . 95.0
light 35.9 30.3 . . . 90.0
zoo 9.0 9.1 . . . 66.7

age sex . . . voc. size dog house . . . zoo

child A
16.2 F . . . 32 0 0 . . . 0
17.1 F . . . 49 1 0 . . . 0
18.9 F . . . 132 1 0 . . . 1

child B
19.3 M . . . 257 1 0 . . . 0
20.5 M . . . 345 1 1 . . . 0

Figure 1: Example of normed CDI entries (top) and longitu-
dinal CDI data for sample children (bottom).

The accuracy of these predictions for any individual de-
pends on the nature of variability within the population. Any
model based on normed data assumes that children learn in a
fundamentally similar fashion to one another. For example,
implicit in a model based on normed data is that late talkers
(children at or below the 20th CDI percentile for vocabulary
size given their age) have the same vocabulary trend as early
talkers (children at or above the 80th percentile). The aggre-
gation essentially suggests that these late talkers do not learn
words in a different order, just that they learn words later.
This suggestion has been directly examined and shown to be
false: typical and late talkers learn not only at different rates
but they also learn different lexical items (e.g., Beckage et al.,
2011). More generally, limitations of the norms have been
noted by many researchers. For example, the norms don’t
generalize to all populations (e.g., Arriaga et al., 1998; Thal
et al., 1999) and the norms mask idiosyncrasies in an individ-
ual’s learning (e.g., Mayor & Plunkett, 2011).

Despite their shortcomings, the CDI norms could still be
useful for characterizing an individual child’s lexical growth.



In this paper, we compare predictions based on the CDI
norms with predictions based on child-specific sources of in-
formation. Specifically, we have two sources of information
at our disposal from a data set we’ll describe shortly. First, we
have child features: the child’s age, sex, vocabulary size, and
language skill as estimated by CDI percentile. Second, we
have the specific productive vocabulary of a child at a partic-
ular moment of time, as assessed by parent report; we charac-
terize the vocabulary as a binary vector of word features indi-
cating whether or not a word is known. These two sources of
information come from longitudinal studies. Figure 1 bottom
frame shows several examples of specific children’s vocabu-
lary trajectories.

We test two hypotheses. First, are child- and word-features
as useful as the population acquisition norms for predicting
whether a specific word will be learned by a child in a certain
window of time? Second, do the child- and word-features
provide redundant information, or can the two qualitatively
different sources combine to yield greater predictive power
than either individually?

The child language literature suggests that information
about an individual learner may be useful in predicting the
learning of unknown words. For example, the sex of the child
is a significant factor in language development as vocabulary
size and the sex of the child are correlated: females have
larger vocabularies on average than their age-matched male
peers (Fenson et al., 1994). Clearly, age is a critical child
feature as well: certain words are more likely to be learned
earlier than others. The CDI percentile, which is formed by
combining information about the child’s age and vocabulary
size as compared to peers, is itself useful for predicting the
specific words a child knows (Beckage & Colunga, 2013).
Thus, we find justification for predicting word learning us-
ing the child features of age, sex, vocabulary size, and CDI
percentile.

Nonetheless, these child features don’t tell the whole story.
The content of the child’s vocabulary may reflect the language
learning environment, the child’s interests and possibly learn-
ing strategies that the child has. Consequently, the words
known by the child may be predictive of which words they
learn next; co-occurrence of words in a child’s vocabulary in-
creases predictability of future language learning above and
beyond the normed age of acquisition data (Beckage & Col-
unga, 2013). Work also suggest that there is a strong relation-
ship between what words a child will learn and the language
learning environment of the child (Weizman & Snow, 2001)
and their specific interests (DeLoache et al., 2007). These as-
pects of learning may be better captured by the content of the
child’s vocabulary than by features related to the child’s age
and vocabulary size.

In this article, we compare models that utilize child fea-
tures and/or word features to predict the learning of individ-
ual words over a time window of roughly a month. That is,
we use information about the child and the child’s vocabulary
at time t to predict whether an individual word not known

at time t will be learned by time t +∆t. (Ideally, observa-
tions are a month apart, but as we explain in the methodol-
ogy section, ∆t varies across observations.) We build logis-
tic regression models for each word individually and include
features related to the child and/or to the vocabulary of the
child. We discuss the modeling assumptions in detail below
but to summarize, we compare performance of logistic re-
gression models to a model based on the age of acquisition
data. The performance of the logistic regression models, with
child- and/or word- features, helps us understand the features
relevant to predicting the learning of individual words, in-
forming our models of lexical acquisition in young children.

Methodology
Vocabulary Data
We use data collected as part of a 12-month longitudinal study
in Dr. Colunga’s Lab at the University of Colorado Boul-
der. The data were collected over three recruitment phases in
which parents and children came to the lab for recurrent vis-
its over 12 consecutive months. Visits were timed at nearly
monthly intervals and, on average, we have 9 visits for each
child in the study. Overall, we include 112 monolingual chil-
dren. At each visit, parents were asked to fill out a vocab-
ulary report. The parental vocabulary report was collected
using the MacArthur-Bates Communicative Development In-
ventory (CDI, Dale & Fenson, 1996) and included 680 com-
monly used English words. Across all recruitment phases, we
have a total of 996 CDI snapshots of children’s’ vocabulary
knowledge.

The study represents many different types of language
learners with the age of the children in the study ranging
from 15.3 months to 33 months. The median age of a child
across all the CDIs is 22 months. We also have a full range
in language ability represented as well. To approximate lan-
guage ability, we utilize the CDI percentile which is calcu-
lated based on the size of the child’s vocabulary as compared
to their age matched peers. The range of the CDI percentile
represented in the CDI vocabulary snapshots was between 0
and 99, with a median percentile of 54. We should note that
recruitment of participants in the longitudinal study was bi-
ased to over-represent late-talkers as late-talkers are a popu-
lation of particular interest in language acquisition.

Of the 680 words on the full CDI, 649 of these words are
normed. These 649 words are the words we use to repre-
sent an individual child’s vocabulary in this study. As part
of these 649 words, all types of word classes are represented.
The most common are concrete nouns (dog, chair, etc.) fol-
lowed by action verbs (drink, run, etc.) as well as connecting
words, descriptive words and words about time and routine.
Because of the variation in the type of words as well as the
baseline knowledge of a word (both in the norms and our ob-
served data) we construct an independent logistic regression
model for each word. We utilize different information from
each CDI snapshot as the input to our model and predict ac-
quisition forward to the next CDI–capturing the probability of



learning a specific word in approximately one month’s time.
Though we model each word individually, we are not inter-
ested in performance across different types of words so we
consider the performance of a model to be based on the fea-
tures included in training across all types of words–that is to
say a model refers to the features included in training, not the
specific word we train on.

Model Construction and Evaluation
We construct separate models for each target word in the CDI.
To generate training and test sets for each target, we use the
snapshots from all children up to and including the point in
time at which the child transitions from not knowing to know-
ing the target. (We use the terms ’know’ and ’learn’ loosely;
the CDI snapshots are in fact a parent’s report of a child’s
productive vocabulary, however, we hope they capture some-
thing about learning and the acquisition process.) The point
of transition can vary from one child to the next as well as
one target to the next. For example, one child may show ini-
tial learning of the word ’dog’ at month 18, and if CDIs are
available for that child for the preceding months 15, 16, and
17, then that child will provide 3 separate snapshots (predict-
ing to month 16, 17 and 18) from which model training and
testing is performed, 2 of which involve a prediction of not
knowing the target and one of which involves knowing the
target.

We explore a set of alternative models for each target word,
as we will describe. The models take as input a representation
of a child’s snapshot at some time t, and predict whether or
not the target is known at the next snapshot, collected at t +
∆t. Specifically, the model outputs the probability of target
acquisition at t+∆t. In all cases of training and test, the target
is not known at t. We make predictions conditional the target
not being known because once a target is learned it remains
known, and one can trivially use the conditional models we
develop to make unconditional predictions.

For each target, the full data set is split into training and
test sets, and the same split is held constant for all alternative
models. The training and test sets are created by selecting all
children who do not know the target at the beginning of the
study. We then place 80% of the children in the training set
and the remaining 20% in the test set. Because the number of
children who initially know a word varies across words, the
training and test set is created uniquely for each target.

We evaluate each alternative model for each target via the
log-likelihood over the test set. This measure weights each
prediction equally, and thus later learning children play more
heavily into the measure. To obtain a single measure of per-
formance for each alternative model, we sum log-likelihoods
over all 649 target words. To determine the reliability of dif-
ference between alternative models across targets, we com-
pute a paired t-test treating target as the random variable.

Baseline Normed Acquisition Model
We constructed a baseline normed model utilizing published
CDI statistics that indicate the normative age of acquisition

(Dale & Fenson, 1996). These norms are based on 1130 CDIs
collected for children between the ages of 16 and 30 months.
In the Dale study, the CDIs are binned by age (rounded to
the nearest month) and then the percentage of children who
were reported to produce a specific word is calculated. We
use these values, for each word, for each month, to esti-
mate the probability of learning a currently unknown word.
In the normed model, only one feature is used for predic-
tion: the age of the child. Because the norms exist only for
children between 16 and 30 months and the children in our
study are occasionally younger or older, we establish bound-
ary conditions–for children over 30 months age or younger
than 16 months, we use either the 30 month or 16 month
norms.

To use the CDI norms for prediction, we must transform
them from a probability of knowing a word at a given age
to the probability of learning a currently unknown word at a
given age. The difference between the CDI norms at month m
and month m−1 might seem like a measure of learning, but
the difference is occasionally negative (due to the fact that
the data used to construct the norms are cross-sectional: the
children in the 16 month group are not the same children as in
the 17 month group). To ensure monotonicity of the normed
model, we smooth out negative differences by replacing them
with the rate of vocabulary change over the minimum time
span that yields a positive rate of change.

Because the CDI norms are binned by months and we may
be required to make a prediction for a child at age t + ∆t
which may lie between two months, linear interpolation on
the smoothed differences of the CDI norms is performed.

Logistic Regression Models
We use lasso regression, a penalized (L1-regularized) logistic
regression model that performs feature selection to exclude
(set coefficients to zero) features that do not meaningfully
contribute to the prediction. In principle, lasso regression
serves to regularize a model; that is, it attempts to prevent
overfitting by reducing the number of nonzero coefficients in
the model. We perform lasso regression in R using the li-
brary glmnet (Friedman et al., 2010), which internally per-
forms cross-validation using the training data to select the
regularization parameter, and the remainder of the data are
used to determine model coefficients.

We develop a set of alternative logistic regression models
that differ in the features provided as input. The two sets
of features we consider are child features and word features.
The child features are: the sex of the child, the number of
words spoken by the child, the CDI percentile, and the age
of the child at snapshot t. We include two additional features
pertaining to the child: ∆t and the session (visit) number. The
reason for including ∆t is that the time between snapshots is
designed to be one month, but this desideratum is not always
satisfied and the variation of ∆t may be useful for prediction.
We include the session number to capture how long into the
12 month longitudinal study the child is. We have found that
the child’s participation in this longitudinal study positively



affects their vocabulary growth and influences their vocabu-
lary size and percentile, thus this child-level feature may af-
fect our ability to predict the acquisition of words.

Turning to the word-level features, we construct an indica-
tor vector with one element per word. The ith element of the
vector is set to 0 or 1 depending on whether the parent reports
that the child can produce word i at snapshot t.

Results
We first compare performance of the normed model, the
child-feature model, and word-feature model (Table 1). The
performance is assessed via log-likelihood; values closer to
zero are better. As expected, the fit to the training set (col-
umn 2) is related to the complexity of the model. The model
with the most free parameters, the word-feature model, best
fit the training data. However, on the test set (column 3), this
model did not perform as well as the child-feature model, due
to overfitting of the training set. Nonetheless, both the child-
and word-feature models outperform the normed model (us-
ing a paired two-tailed t-test, child t(649)=44.71, p <.001;
word t(648)=30.62, p <.001).

Table 1: Performance of the normed, child-feature and word-
feature models.

llk train llk test % best fit % vs norms
norms -123881 -31092 3.05 —
child -84698 -22774 67.64 96.92
word -65703 -24059 30.51 91.06

The log-likelihood score combines performance across in-
dividual words. We can also examine which of the models—
normed, child-, and word-feature—performs the best for each
word. Column 4 of Table 1 indicates the percentage of words
for which a given model outperforms the other two. Column
5 indicates the same for the child- and word-feature models
compared separately against the normed model. Consistent
with the log-likelihood results, both child- and word-feature
models outperform the norms, and the child-feature model
outperforms the word-feature model.

Because lasso regression discards input features it deems
to be irrelevant, we use the presence or absence of a feature
as a proxy for importance. Since a model is trained indepen-
dently for each predicted word, we determine the percentage
of models that include a particular child-feature to measure
the importance of a feature. The child-feature models have
an average of 4.7 parameters, and range from having 1 pa-
rameter (the intercept) to 7 (all child features plus intercept).
Across child-feature models, 64.1% included gender, 64.1%
included either age and age-at-prediction, but only 22.8% in-
cluded both, suggesting that the time between visits is less
important than the general age of the child. The session visit
appears significant in nearly 60% of models. Most important
to the child-feature model are percentile and total vocabulary
size. Percentile is present in in 87.1% and total vocabulary
size at time t appears in 73.1% of the models respectively.

For the word-feature model, the number of parameters
could range from 1 (intercept) to 650 (each of the 649 words
plus the intercept). The actual range based on the model fit
for each word was between 1 and 83 features with an average
of 31 features. Since only a subset of the 649 words ended
up in the logistic regression models we can conclude that a
localized representation was at least as useful in predicting
acquisition than the full vocabulary. Of the features included
in the model, 83% had a positive weight indicating an in-
creased probability of learning the target word if the word
was known. We hope to investigate the relationships between
individual words, as well as why some of the coefficients in
the model were negative in future work.

We can conclusively say that both the child and word fea-
tures outperform the model based on the acquisition norms.
We can also conclude that the set of child features outperform
the word-vector features. To see how much of the increase in
performance of the child features over the word features was
due to overfitting of the word-feature model, we perform a
dimensionality reduction on the word features using princi-
pal component analysis on all 996 vocabularies, regardless of
whether a specific vocabulary is in the training or test set. We
use the first 18 components of the PCA reduction based on a
Scree plot of the components. We then take the full binary
vocabulary of the child and multiply it by the reduced PCA
representation for each word, for each snapshot resulting in
a vector of 18 features, representing each child’s vocabulary
snapshot.

Utilizing this representation of the vocabulary data (redux-
word), we now find that the total likelihood of this model
is less than the child-feature model. We compare this re-
duced word model to the child-feature model and a model
that contains both the child and reduced word features. Col-
umn 2 of Table 2 shows the total log-likelihood (llk) for the
models based on child features, word features, reduced-word
features (redux-word), and both reduced word and child fea-
tures. Referring back to Table 1, we confirm that all of
these models outperform the model based on the CDI pro-
duction norms. The number of free parameters (which is
correlated with performance on the training set) is included
in column 3, as are the average number of features seen in
each model across all words (column 4). On the test data,
model fit is best for the child- and the reduced word feature
models. These two models, are not significantly different
in a paired t-test (t(649)=1.44, p = 0.148) but the reduced-
word-feature model is significantly better than all other mod-
els, we report the results of a t-test between the two redux
models (t(649)=3.07, p = 0.002). We find that the child-
feature model is not significantly different than the reduced
word model with word+child features.

A priori, it seems likely that adding additional child-
features should only improve the performance of the reduced-
word (redux-word) model. We instead find that the model
with the extra child-features performs statistically worse than
only the reduced word-feature model. We believe this is be-



Table 2: Performance of the logistic regression models with
different features.

total llk poss. params # params
child -22774 7 4.70
word -24059 650 31.20
redux-word -22654 19 8.39
redux-word+child -22848 25 9.72

cause lasso regression is a greedy algorithm and therefore,
if a set of variables capture more information than a single
variable the model will choose the single variable and discard
the others. In the case of variables such as vocabulary size
or percentile, there may be an ensemble of other variables
that represent the feature better–something the greedy algo-
rithm cannot easily capture. To account for this shortcoming
of lasso-regression, we construct a final ensemble model in
hopes of understanding the role of child-level and word-level
features in modeling acquisition.

Our final ensemble model simply averages the prediction
from the child- and the reduced word-feature model. This
ensemble model significantly outperforms any other model,
with a lower total likelihood value of -22263. We confirm
this improvement in a paired t-test to both the child- and the
reduced word-feature models (child: t(649)=9.96 p <.001;
word: t(648)=9.52 p <.001). In Figure 2, we visualize the
types of information the two models might be using that re-
sult in a better ensemble model. The first frame captures the
relationship between percentile and vocabulary size, colored
based on age of the child, highlighting the information in the
child-level features. Frame 2 of Figure 2 captures the infor-
mation relevant in the dimensionality reduction. We color the
data points based on the number of CDIs in which the word
was reported as known. The first two components, visualized
in the graph, seem to encode information about the population
rate of knowing a specific word across all of the 996 CDIs.

Conclusions
Our results show that models can predict the acquisition of
a particular target word by a specific child. In contrast, past
research has primarily focused on characterizing general pop-
ulation trends in vocabulary growth. We find that two quali-
tatively different sources of information are useful for predic-
tion: features that describe the child (such as age and sex and
total vocabulary size) and features that specify the vocabulary
content. Models based on either child- or word-features out-
perform the traditional age-of-acquisition norms in predicting
whether a specific word will be learned by a specific child.

We investigated which of the child features were most use-
ful for prediction via lasso regression, and found that CDI
percentile (chosen for 87% of models), vocabulary size (cho-
sen for 75% of models), and age (chosen for 64% of models)
were common features. Although CDI percentile is a func-
tion of both vocabulary size and age, the three features were
often (38% of models) included together in the model for a
specific word, consistent with previous work suggesting that
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Figure 2: Graphical representation of child-level and word-
level features.

CDI percentile contains useful information about the interac-
tion between age and vocabulary size as compared to the peer
group (Thal et al., 1999; Beckage & Colunga, 2013).

The success of the word-feature representation, both with
and without dimensionality reduction, indicates that the con-
tent of the vocabulary is predictive of language learning.
This result is exciting because understanding how the known
vocabulary supports future vocabulary learning provides a
new opportunity for understanding the developmental process
(Smith, 2000). Further, this type of modeling can potentially
be extended to interventions: if we know how words build on
one another, can we teach children certain words to create vo-
cabularies that are more useful for future language learning?

We found that reducing the word-feature vector via princi-



pal components analysis improves model performance com-
pared to using the original word-feature vector. This reduc-
tion is beneficial because PCA performs noise suppression
when we drop non-primary components and because it re-
duces the opportunity for overfitting. In addition, the reduced
representation may be more interpretable and psychologically
relevant. Referring to Figure 2, we see that the frequency at
which the word is known in the overall set of vocabularies
seems to be strongly related to the first 2 components but
other components might include semantic or phonological
features that can tell us more about the process of acquisi-
tion. We plan to explore this research question in more detail
in the future.

Perhaps our most important finding is that the child and
word features are complementary. This complementarity was
not evident when we constructed a single regression model
with both sets of features, but stood out when we combined
predictions of child-feature and word-feature models. The
combination, obtained by averaging the two models’ outputs,
achieves a statistically reliable improvement in prediction.
The resulting ensemble is proof that the child and word fea-
tures contain different types of information, both of which are
useful for predicting future language learning.

The key value of modeling in this domain is to help us
understand the sources of information that aid in prediction
the acquisition of new words. We showed in this work that
both child and word features are useful, and that the nature of
representation matters (e.g., unreduced versus reduced word
vectors). Clearly, there are many other source of information
that could be incorporated into a model, such as demographic
characteristics, the linguistic environment, and cognitive and
motor assessments of the child. Of course, obtaining these
measures can be costly, and future modeling will be directed
at determining which measures provide the most diagnostic
features. One dimension we have begun exploring is the se-
mantics and phonology of the child’s productive vocabulary.
In our present work, we treat the words as independent sym-
bols, but in principle a word representation which character-
izes known words and the target word in terms of semantic
and phonological features could be utilized.

Beyond exploring new types of features that might be use-
ful in modeling language acquisition, we would also like to
expand the class of models used to predict acquisition. The
most natural extension of logistic regression is a multilayer
neural network. In a network’s hidden layer, we can look
for the emergence of new features that have psychological
plausibility. Indeed, the success of our ensemble model sug-
gests that an intermediate level of representational transfor-
mation may serve the prediction task. Although the models
we have focused on in this work are not intended to charac-
terize cognitive and developmental processes per se, the rep-
resentations found to be useful for prediction should inform
cognitive models of child language development.

Acknowledgments
This work was funded through an award from the John Merck
Scholars Fund and by NICHD grant R01 HD067315 to Eliana
Colunga. The first author was funded in part through the NSF
GRFP. Data was collected by the DACS Lab at the University
of Colorado Boulder with much help from the DACS Lab
undergraduates and the Boulder community parents.

References
Arriaga, R. I., Fenson, L., Cronan, T., & Pethick, S. J. (1998).

Scores on the macarthur communicative development in-
ventory of children from lowand middle-income families.
Applied Psycholinguistics, 19(02), 209–223.

Beckage, N. M., & Colunga, E. (2013). Using the words
toddlers know now to predict the words they will learn next.
Proc. of the 35th Conf of the Cog. Sci. Society, 163-168.

Beckage, N. M., Smith, L. B., & Hills, T. T. (2011). Small
worlds and semantic network growth in typical and late
talkers. PloS one, 6(5), e19348.

Dale, P. S., & Fenson, L. (1996). Lexical development norms
for young children. Behavior Research Methods, Instru-
ments, & Computers, 28(1), 125–127.

Dale, P. S., Price, T. S., Bishop, D. V., & Plomin, R. (2003).
Outcomes of early language delay. predicting persistent
and transient language difficulties at 3 and 4 years. Journal
of Speech, Language, and Hearing Research, 46(3), 544–
560.

DeLoache, J. S., Simcock, G., & Macari, S. (2007). Planes,
trains, automobiles–and tea sets: Extremely intense inter-
ests in very young children. Developmental Psychology,
43(6), 1576-1586.

Fenson, L., Dale, P. S., Reznick, J. S., Bates, E., Thal, D. J.,
Pethick, S. J., . . . Stiles, J. (1994). Variability in early
communicative development. Monographs of the society
for research in child development, 59(5), 1–185.

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regular-
ization paths for generalized linear models via coordinate
descent. Journal of Statistical Software, 33(1), 1–22.

Mayor, J., & Plunkett, K. (2011). A statistical estimate of
infant and toddler vocabulary size from cdi analysis. De-
velopmental Science, 14(4), 769–785.

Smith, L. B. (2000). Learning how to learn words: An as-
sociative crane. In Becoming a word learner: A debate on
lexical acquisition (pp. 51–80).

Thal, D. J., O’Hanlon, L., Clemmons, M., & Fralin, L.
(1999). Vaidity of a parent report measure of vocabu-
lary and syntax for preschool children with language im-
pairment. Journal of Speech, Language, and Hearing Re-
search, 42(2), 482–496.

Weizman, Z. O., & Snow, C. E. (2001). Lexical output as
related to children’s vocabulary acquisition: Effects of so-
phisticated exposure and support for meaning. Develop-
mental Psychology, 37, 265-279.


